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The mean-square angular displacement of a fluid material line element is ex- 
pressed as an integral of the corresponding angular velocity in material co- 
ordinates, with forms like those in Taylor’s (1921) linear displacement analysis. 
Measurements using a hydrogen-bubble tracer in isotropic turbulence show that 
the mean-square angular velocity of a line is of the same order of magnitude as 
the mean-square vorticity, and that its ‘Lagrangian’ integral time scale is of 
the order of the inverse of the r.m.s. vorticity. The angular velocity of a line 
element is also formulated in spatial co-ordinates. Finally, the connexion between 
angular dispersion and the approach toward isotropy is pointed out. 

~~~~~~ ~ ~ ~ ~ 

1. Introduction 
The statistical problem of turbulent dispersion of a fluid material point from 

a designated location was first formulated in a natural way by Taylor (1921), by 
relating the mean-square displacement to the autocorrelation function of the 
point velocity represented in material (‘Lagrangian’) co-ordinates. Much of the 
research on this problem since that time, including the generalization to pairs of 
points, has been summarized by Batchelor & Townsend (1956), by Lumley 
(1962) and by Corrsin (1962). Little work seems to have been done directly upon 
the angular dispersion of an infinitesimal fluid material line (to be called a ‘line 
element’) under similar circumstances. It is our purpose to report a first simple 
look a t  this question. 

2. Representation in material co-ordinates 
Consider a line element represented in a ‘right-handed’ Cartesian co-ordinate 

system. We are interested in the evolution of the statistical properties of the 
unit vector 1, whose components are the direction cosines. However, the actual 
angular dispersion is in a sense more naturally tied to the behaviour of angles 
such as B(o,8(9 and 8(,,, those given by projection on the Cartesian planes (see 
figure 1). In  particular, if we ever take an interest in statistically isotropic orienta- 
tion, this will be most easily stated as the constancy of the probability density 
functions of the angles, as observed,? over 2n. 

t T h i s  is not the same aa the actual total angles because the appearance of the line 
element is the same for O(il = a,  a + r, a + 2a, eta. If the two ends of the element can be 
distinguished (like the feathar end and the business end of an arrow), then the appearance 
is the same for O0, = a, a+2n, a+4n, ... . 
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/ x; 

(b) 

FIGURE 1. Notation for the line element. (a) The initial position at t = to and the position 
at  t = t .  (6)  Direction cosines and projected anglee. 

The angles r3(i) made by the line element can be written in material co-ordinates 
a as @(,,(a,t), where a identifies the fluid material point. The corresponding 
observed angular velocity is 

B,) = a@(,)(a, t)/at. (1) 

The subscript on 
component of a vector. 

equation of its characteristics) to give 

is bracketed to remind us that this is not a Cartesian 

Equation (1)  can be ‘integrated with respect to t’ (actually we integrate the 

which is analogous to Taylor’s representation of a displacement component. 
For simplicity, we put the x1 axis along the direction of the element a t  t = to. 
Then 

(3) @da, to)  = 0, @(,)(a, to) = @(,)(a, to)  = in. 
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Multiplying (2) for i = 1 by Bo(a,t), then forming the ensemble average, we 
get what might be called the 'angular diffusivity': 

For further simplicity, we restrict the turbulence to being isotropic and 
statistically stationary (a physically contradictory pair of conditions, of course, 
but useful for some purposes), so that 

Bda, t )  %)(a, t f 7 )  = L(7). 
Then (4) can be written as 

1 d- 

Integrating again yields 

and integrating this by parts gives a single-integral form, viz. 

Asymptotic behaviour for t -+ to and for t -to += 00 can also be written in 
forms analogous to those in Taylor's displacement analysis. As B(9 is a stationary 
random function oft, L(7) is even, so its Maclaurin series is 

or, in terms of B(%) itself, 

(10) L(7) = %.- 8%) . 

By introducing the symbol N(7)  3 L(T)/L(O) for the correlation function, and 

for the abscissa intercept of the vertex-osculating parabola of N(T) ,  we can 

(12) 
rewrite (10) as 

The small-time behaviour of the mean-square angular displacement is then given 

N(7)  = 1 -72/h$+ ... . 

by (7) or (8) as - 
+ B 2 ( t - t 0 ) 2 { l - ( t - t o ) 2 / 6 h ~ } .  (13) 

The corresponding behaviour for t - to + 00 follows from (8) under the assump- 
tions that the necessary integrals are finite constants for t - to = 00: 

f From this point on we omit the subsoript on B for simplioity. 
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or 

where 
r m  

is the integral time scale of the angular velocity. If it is assumed that the large 
7 behaviour of N(7)  is such that SB, the second integral in (la), ‘reaches’ its 
asymptotic value for finite large ( t - to) , t  the first term in (15) will eventually 
dominate, and (15) simplifies to the classical ‘Brownian motion’ form associated 
with gas molecules, - 

--f 2 % ? ~ ( t  - to) ,  (16) 

which corresponds to constant ‘ angular diffusivity ’ : 

Clearly it would be interesting to relate the mean-square angular velocity 
B2 and the two time scales A, and TB to better known properties in terms of 
either material (‘Lagrangian ’) or spatial (‘ Eulerian ’) co-ordinates. 

- 

3. An experiment 
Hydrogen-bubble lines perpendicular to the mean flow have been photo- 

graphed in nearly isotropic, grid-generated turbulence in a water tunnel (Corrsin 
& Karweit 1969). The grid Reynolds number based on the mesh size (0.5in.) and 
empty tunnel mean speed (4.0 in./s) was 1360, a ‘small’ value, which gave a 
turbulence Reynolds number based on Taylor microscale and r.m.8. turbulent 
component velocity of R, w 5. 

As each marked fluid line drifted downstream from the electrolysis wire 
(located a t  zo,/M = 18, i.e. 18 mesh lengths behind the grid), it became in- 
creasingly convoluted. At each of seven downstream distances, the randomly 
convoluted line was sampled at ten positions equally spaced across the tunnel 
section. The corresponding readings of &)(zl - zol) taken from 36 lines at each 
station were plotted to give empirical probability density functions (actually 
‘frequency functions’) f@(y; Axl/M). Here Axl = x1 - zol and M is grid mesh size. 
At each station the ten sample positions were far enough apart for the 0, 
readings to be essentially independent, so each frequency function was described 
by 360 independent data points. 

We are interested in samples uniformly spaced, or randomly spaced without 
bias, along the fluid contour itself. With respect to that objective, our measured 
density functiomf,(y; Ax,/N) were biased in favour of line regions with < 1, 
so they had to be ‘corrected’. The desired density function is related to the 
measured one in principle by 

P e k  Az,/W =f& Az,/M)/Icosyl. (18) 

t For the mathematical reader, it should be noted that the (weaker) necessary and 
sufficient condition for this asymptotic form is that L(T) be ‘CBsaro-1 integrable’ to a non- 
zero value (Lumley 1970). 
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BAt *z, = - 
M M  

2.44 
4.88 
7-32 
9-76 

12.20 
14-64 
17-08 

oAs/M 
(see equation (30)) 

1.98 
4.16 
5-60 
7.24 
8.85 
9.94 
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TABLE 1 

- 
%) 

0.09 12 
0.252 
0.50 
0.765 
0.812 
0.835 
1.22 

- 
(@t)V 

0.302 
0.503 
0.707 
0.875 
0.901 
0-915 
1.106 

Because of the singularity this is inconvenient, so we actually used f3(a values at 
intervals of lo”, and the approximate ‘correction’ 

From the resulting collection of probability density functions the ‘measured ’ 
mean-square angular displacements were computed (table 1). In order to relate 
these data to the stationary turbulence analysis of the previous section, they 
must be ‘corrected’ for the effects of downstream decay. 

4. ‘Correction’ for decay 
A fairly detailed discussion of velocity covariance rescaling has been given by, 

among others, Comte-Bellot & Corrsin (1971).t Here we use analogous procedures 
for the rescaling of angular velocity. The objective can be stated as follows: we 
have a non-stationary random variable B(t) and want to rescale both B and t 
to generate a stationary random variable 

F(s)  B[t(s)]/Bref[t(~)].  (20) 

The obvious choice for Bref would be B’(t), the root-mean-square value. This, 
however, is not available so, on grounds suggested in the next paragraph, we 
use the r.m.s. vorticity instead: 

F = [oJw’ ( t ) ]  B(t),  (21) 

where = w‘(t,) is included so that P has the same dimensions as B. Each of 
the quantities in (21) is a component, but subscripts are omitted for simplicity. 
A prime denotes a root-mean-square value. 

Recall (a) that the vorticity o = V x u is just twice the angular velocity of 
a volume element of fluid, ( b )  that a line element is rotated by both the vorticity 
and the strain rate, and (c) that the mean-square vorticity and strain rate are 
equal in isotropic turbulence. Therefore we guess that @ w z. 

t For velocity rescaling the r.m.s. turbulent velocity and the integral length scale are 
oombined into a charmteristic ‘looal’ time scale (Townsend 1951, 1954; Comte-Bellot & 
Corrsin 1971). 
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Only slightly less obvious would be the choice of [B’(t)]-l  as the local time 
scale, but again we use the r.m.s. component vorticity: 

ds = (w‘(t)/wA) dt. (22 )  

Equation ( 4 )  is applicable to decaying turbulence like that in the experiment, 
and we substitute (21)  and (22)  into it. The outcome is (omitting subscripts) 

ASS-S~+CQ,  

The next step is to estimate s ( t )  from (22 ) .  
Since the turbulence is approximately isotropic, we can estimate the vorticity 

from one of Taylor’s forms for the energy decay rate (see, for example, Batchelor 
1953): 

where v is the kinematic viscosity. In  the experiment time is, of course, propor- 
tional to downstream distance from the grid : x1 = gt. 

Assuming that the mean-square velocity components decay approximately 
as in the straight-duct experiments summarized by Comte-Bellot & Corrsin 
(1966)) we arrive at the estimate for a vorticity component: 

- - 
d(+u,u,)/dt = - V U ~ W ~ ,  (26)  

Then (22)  becomes 

When integrated from so to s and from to to t ,  this gives the rescaled time dif- 
ference as 

- 8 M  Dt0 1.125 gto 0.125 -0.125 
s - S 0 = ~ ( ~ - 2 * 0 )  ( ( w - 2 . 0 )  - ( : -2*0)  ). (29)  

For this particular experiment, = 10.16 cmls, M = 1.27 cmand UtJM = 18, so 

U ( s - s , ) / M  = 181{0.707 - (8.0t - 2*0)-0’125}, (30)  

whose values are given in the second column of table 1. 

time. According to (13 )  we can estimate the r.m.s. angular velocity at 
Figure 2 presents the r.m.s. angular displacement as functions of ‘corrected’ 

Dto/M = 18 = Cso/M 

by estimating the initial slope of the latter curve. The result (sketched) is 

B’(to) = P’(s0) = 1 . 2 4 ~ ~ ’ .  
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FIGURE 2. Angular displaoement data ‘corrected’ for vortioity decay. 

(a) Root-mean-square value. ( 6 )  Mean-square value. 

It is interesting to compare this with the ‘measured’ r.m.s. component vorticity 
estimated via (26): w; M 1.959-1, which is certainly the same order of magnitude, 
as conjectured. 

Next, (16) can be invoked to estimate the integral time scale T, from the 
roughly estimated (and sketched) asymptotic slope of the @data. The result is 

TF M 0.37s. 

We might wonder if the integral time scale of the angular velocity is comparable 
to the simplest characteristic time in the turbulence, viz. (u’)-l. In  fact, this is 
SO: (@A)-’ x 0.51 S. 

Unfortunately there are too few data points to enable us to estimate the 
‘microscale’ A, by applying (13). 

5. The angular velocity in spatial co-ordinates 
Any attempt to relate the angular dispersion to more accessible turbulence 

information, experimental or theoretical, must look at the expression for the 
angular dispersion in spatial (‘ Eulerian ’) co-ordinates. We are faced a t  once 
with the fact that the line element unit vector 1 obeys a complicated differential 
equation, and that equations for the angular displacements are even worse. 

By techniques somewhat like those used by Batchelor (1952) to deduce the 
equation for time rate of increase of line element length, we can deduce that 

where 1 is the appropriate unit vector, the array of direction cosines, u(x, t )  is 
velocity in a spatial frame, x is the spatial co-ordinate vector, t is time and 
D/Dt = a/at+ (u.V), the ‘material time derivative’, i.e. the spatial-frame ex- 
pression for the time partial derivative in a material (‘Lagrangian’) frame. 
Equation (3  1)  can also be written as 

DlJDt = &liwu+ &(aii, - lJm) lkemk , (32) 
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where wii = aui/axj - au,lax, and eii E auilaxj + au,/ax, 

are vorticity and strain-rate tensors. 

photographs along the Cartesian axes: 
Figure i ( b )  shows the three projected angles which would be measured by 

These, incidentally, satisfy 

From (33) we can deduce equations, expressed solely in terms of the 8(i) and 
velocitygradients, for the time rates of increase of these three angles for a material 
line element : 

equations for DB(d/Dt and DO(,)lDt being given by cyclic permutation of all 
subscripts. 

For particular line element orientations (which might be specified a t  to, the 
start of the dispersion process) these equations simplify considerably. We look 
at three simple cases. 

(i) O(o = O(,) = 0(3) = an. 

Equation (35) here reduces to 

(37) 

with similar expressions for DB(,)lDt and DB(3)lDt. 

(ii) O(,) = O,,) = 0,  Oo undefined. (38) 

(The direction cosines in this case are Z, = 1, I ,  = I, = 0.) Here, (35) does not exist, 
but the other two equations become simply 
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For isotropic turbulence these ‘ initial ’ angular velocity components have 
roughly equal mean-square values. 

where f ( r )  is the Kkman-Howarth ‘longitudinal ’ correlation coefficient function 
of velocity, the primes denote derivatives and F i s  the mean-square component 
velocitv. 

It is interesting that these components are all of the same order of magnitude. 
To compute the mean-square angular velocity of an arbitrarily oriented line 
element we would have to square (35), for example, and integrate it with the 
weightings of O0, & ,  and 8(,, appropriate to isotropic initial line orientation. 

As a magnitude comparison with the values in (44), (45) and (46), we recall 
that the mean-square value of a Cartesian component of vorticity in isotropic 
turbulence is 5&’2. 

6. The approach of a scalar field toward isotropy 
Angular dispersion is a possible framework within which to consider the 

approach toward isotropy of an initially anisotropic scalar field being mixed 
by an isotropic turbulence. Such an initial-value problem, though an obvious 
prelude to the more difficult one of how turbulence itself tends to become iso- 
tropic, seems to have been ignored in the scientific literature. The only work 
known to us is an unpublished report by O’Brien (1963). 

To illustrate the question, consider a scalar field initially consisting of iso- 
tropically positioned, short straight lines all parallel, see figure 3(a). If all the 
lines are much shorter than the Kolmogorov microscale of the isotropic turbulence 
which convects them, and if there is no molecular diffusion, the scalar field will 
presumably become very nearly isotropic by the time the root-mean-square 
angular dispersion is much larger than in: 

0;q B in. (47) 

Figure 3 ( b )  is a qualitative sketch of a single realization. 
The isotropic state is, of course, not uniquely prescribed by the 0’s of the 

marked line elements. It is established rather by their probability density over 
the interval 

nn Q O(i) Q (n+ l)n,  (48) 
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FIGURE 3. Qualitative sketoh of the angular dispersion of a single realization of material 
line elements. (a) Start, t = to. (a) Virtually isotropio. 

where all integer values of n are included. In  other words, in figure 3 (b )  it is the 
actual observed orientation angle a (say) in the range 0 < a < 7~ which decides 
the isotropy, independently of the value of n in the equation 

a = 0-n r .  (49) 

In  order to get a rough idea of the degee of the inequality in (47) needed for 
any specific departure from isotropy, it is instructive to suppose that 0 is 
Gaussian, and to  look at the probability density function of a for various ratios 
@‘/(&r). Figure 4 shows pa, the probability density function of a, plotted radially 
on the outside of a circle for three different (rather small) values of 0’. In effect 
we have simply wrapped the Gaussian function around the circle, summing the 
overlapping parts. The relatively small value of 0’ corresponding to effective 
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Of+, @‘=fn O’=)n 

FIQ~RE 4. Normal (‘Gaussian’) probability density function of angle, 
wrapped around a circular base. 

1.0 I-, 

FIGURE 5. Degree of isotropy as a function of r.m.8. angular displacement. 

isotropy is illustrated by figure 5,  which gives a direct measure of the lopsided- 
ness ofpa .  By the time @’ = n-, the field is essentially isotropic. This suggests that 
(47) is much too strong a condition. 

If the initial scalar field were an array of infinite parallel lines, it is clear that 
both translational dispersion and angular dispersion would play a role in the 
approach toward isotropy. 
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